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a b s t r a c t

The antioxidant ability of an array of commercially available flavonoids was evaluated on the larvae of the
zebrafish model organism, in order to find flavonoids with lower toxicities and higher radical oxygen-
scavenging properties than flavone. Among the flavonoids tested, chrysin and morin possessed higher
reactive oxygen species (ROS)-scavenging rates (�99% and �101%, respectively) and lower toxicity
(LD50 > 100 ppm). Zebrafish fins in the UVB + chrysin group were 6.30 times more likely to grow to nor-
mal fin size than those in the UVB-only control group, while zebrafish fins in the UVB + morin group were
11.9 times more likely to grow to normal fin size than those in the UVB-only control group. These results
were analysed by the QSAR method and were in accordance with predicted values. A new 40-fluoroflav-
one was synthesised. The ROS-scavenging rate of 40-fluoroflavone was �54%, which corresponds well
with the predicted value (�48%). We propose that a combination of QSAR prediction and the zebrafish
model organism is efficient for evaluating new flavonoids.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Flavonoids are a group of plant polyphenols and are widely
present in many plants, including edible fruits and vegetables
(Harborne & Williams, 2000; Heim, Tagliaferro, & Bobilya, 2002;
Lee, Kim, Kang, & Cho, 2007). Most flavonoids possess antioxidant
activities. For example, flavone and 3,40-dihydroxyflavone can sup-
press reactive oxygen species (ROS) that are generated by UVB
radiation (Lee, Kang, Kim, Lee, & Cho, 2005; Tsai et al., in press).
In addition, baicalein (5,6,7-trihydroxyflavone) can suppress ROS
and protect cardiomyocytes from lethal oxidant damage (Shao
et al., 1999). The ROS-scavenging abilities of flavonoids give them
beneficial effects, such as anti-inflammatory, neuroprotective, car-
dioprotective and UVB-protective activities (Chirumbolo, 2010; Lee
et al., 2007; Mazur, Bayle, Lab, Rock, & Rayssiguier, 1999; Ono et al.,
2005; Tsai et al., in press).

Structurally, flavonoids are known to have a diphenylpropane
(C6C3C6) skeleton. The different ROS-scavenging activities of vari-
ous flavonoids have been suggested to be dependent on the num-
ber and positions of the hydroxyl (OH) groups on their skeletal
ll rights reserved.
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carbons (Havsteen, 2002; Lee et al., 2007). For instance, 30,40-
dihydroxyflavone suppresses the generation of ROS in human
HaCaT keratinocytes induced by UVB treatment (Lee et al., 2007).
However, another structurally related compound, 3-hydroxyflav-
one, enhances the generation of intracellular ROS (Lee et al.,
2007). Therefore, the structure–activity relationships (SAR) of
flavonoids have become an important area of study.

We have previously used a zebrafish model in a series of time-
and dose-dependent flavonoid (flavone, flavanone, and chalcone)
exposure experiments. Our results showed that flavones have the
highest chemoprotective effects against UVB-induced cytotoxicity
(Tsai et al., in press). Quantitative structure–activity relationships
(QSAR) have frequently been used to determine the correlations
between the biological activities and the physicochemical proper-
ties of various compounds (Chang, Yang, & Wang, 2010; Liao et al.,
2006). Due to the broad spectrum of biological effects of flavonoids,
they have become one of the most popular subjects for QSAR stud-
ies. In this study, the ROS-scavenging activities of 15 commercially
available flavonoids that possessed various hydroxyl groups or
other substituents were evaluated by the QSAR method. In addi-
tion to the flavonoids, a unique 40-fluoroflavone was also synthes-
ised, based on a QSAR prediction, and compared to the
commercially available flavonoids used in this study. The results
of this study will enable us to synthesise other novel flavone deriv-
atives that have lower toxicities and higher antioxidant activities
in the future.

http://dx.doi.org/10.1016/j.foodchem.2012.02.166
mailto:yauhung@mail.tku.edu.tw
mailto:bcw@mail.tku.edu.tw
mailto:tlshih@mail.tku.edu.tw
http://dx.doi.org/10.1016/j.foodchem.2012.02.166
http://www.sciencedirect.com/science/journal/03088146
http://www.elsevier.com/locate/foodchem


718 Y.-H. Chen et al. / Food Chemistry 134 (2012) 717–724
2. Materials and methods

2.1. Fish embryos

Zebrafish of the AB strain were maintained at approximately
28.5 �C on a 14-h light and a 10-h dark photoperiod. The proce-
dures for zebrafish culture and embryo collection used in this
study have been described previously (Chen, Lee, Liu, & Tsai,
2001; Chen, Lin, & Lee, 2009; Lee, Chang, Hsu, & Chen, 2011). The
designation of zebrafish developmental stages follows that de-
scribed previously (Kimmel, Ballard, Kimmel, Ullmann, & Schilling,
1995). All animal experiments in this study were performed in
accordance with the guidelines issued by the regional animal eth-
ics committee.
2.2. Chemicals and survival rates analysis

All the flavonoids, including flavone, 7-hydroxyflavone, 3,6-
dihydroxyflavone, 7,8-dihydroxyflavone, 30,40-dihydroxyflavone,
30,40,5,7-dihydroxyflavone, 6-methoxyflavone, 7-methoxyflavone,
6-aminoflavone, 7-aminoflavone, chrysin, kaempferol, morin,
quercetin, myricetin and rutin (Fig. 1) were purchased from ECHO
Chemical Co. (Taipei, Taiwan). All of the chemicals were dissolved
in DMSO to the designated concentrations. For the survival rate
analysis, 30 embryos were collected and treated with different
concentrations of flavonoids for 3 h (72–75 h post-fertilisation
(hpf)), and their survival rates were calculated.
2.3. UVB exposure

Embryos that developed to 72 hpf were collected, randomly di-
vided into 30 embryos per experimental group (with or without
flavonoids), and exposed to 302 nm UVB generated by a UV cross
Fig. 1. The structures of flavo
linker (Spectroline, New York, NY). Each group was exposed to
UVB 6 times separated by 30 min intervals (Chen et al., 2011;
Wang et al., 2009). Each exposure was around 28 s (100 mJ/cm2

of energy). After UVB exposure, all embryos were cultivated in 6-
well cell culture plates until the analysis of their ROS levels.
2.4. Detection of ROS and data analysis

To detect the accumulation of ROS in zebrafish embryos, em-
bryos from the UVB-only group (no flavonoids added) and embryos
from the UVB + 20 ppm flavonoid groups (all flavonoids are listed
in Fig. 1) were incubated with 500 ng/ml dihydrodichlorofluores-
cein diacetate (H2DCFDA, Molecular Probes). Intracellular
H2DCFDA was de-esterified to dichlorodihydrofluorescein, which
was oxidised by ROS to produce the fluorescent compound dichlo-
rofluorescein (DCF). After a 150-min incubation at 28 �C, the fluo-
rescence intensity of the embryo (FI) was measured at excitation/
emission = 485/530 nm. All data were presented as ‘‘ROS-scaveng-
ing rates’’ calculated by the following equation: ROS-scavenging
rates (%) = (FIflavonoids � FIUVB only/FIUVB only) � 100%. FIflavonoids and
FIUVB only represent the fluorescence intensity (FI) of the
UVB + 20 ppm flavonoid group and the UVB-only group, respec-
tively. A positive ROS-scavenging rate means that treatment with
the flavonoid compound led to the generation of ROS. A negative
ROS-scavenging rate means that the tested flavonoid compound
has ROS-scavenging activities.
2.5. Fin-protection experiments

For the fin-protection experiments, embryos at 72 hpf were col-
lected and randomly divided into 5 groups (30 embryos each). In
addition to receiving 6 treatments of UVB (100 mJ/cm2 each), each
group was exposed to either water (UVB-only group), water con-
noids used in this study.
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taining chrysin (10 or 20 ppm), or water containing morin (10 or
20 ppm). The fin malformation rates ((numbers of surviving em-
bryo with malformed fins/30) � 100%) were calculated each day
for five days following the UVB exposures.

2.6. Statistical analyses

All analyses in this study were carried out using JMP statistical
software (Version 4.02). We treated ‘normal fin development’ as
the event of interest, and regarded embryos that did not achieve
normal fin development prior to death or at the end of the exper-
iment as censored data. The Kaplan–Meier method was used to de-
scribe the time-to-return phenomena, an estimate of the average
time until ‘return to normal’ occurred for each treatment group.
The log-rank test was applied to examine the differences in the
malformation (non-return) rates between groups. The Cox propor-
tional hazards fit was employed to quantify the relative probability
of normal fin development for each treatment group compared to
the control group. A p-value of less than 0.05 was considered sta-
tistically significant in all analyses.

2.7. QSAR methods

The 3D chemical structures of all compounds were built initially
using Hyperchem, version 6.03 (HYPERCHEM 6.03 Hypercube,
http://www.hyper.com) and subsequently exported to Accelrys
Discovery Studio, version 2.1 (DS) (Accelrys Inc., San Diego, CA).
All geometries were optimised by CHARMM force fields (Discovery
Studio. Accelrys Software Inc., Cambridge, MA) (Brooks et al.,
1983), and then their energies were minimised using Steepest Des-
cent followed by Conjugate Gradient algorithms with a convergence
gradient value of 0.001 kcal/mol. Fourteen flavonoids with definite
ROS-scavenging rates were selected for QSAR analyses, and various
physicochemical properties were selected as descriptors for initial
QSAR construction. 2D and 3D hybrid QSAR studies have been con-
ducted with the structural, topological, spatial, and thermody-
namic descriptors of these flavonoids. To develop the QSAR
model, the statistical techniques were used with genetic function
algorithm (GFA) and partial least squares (PLS). The genetic func-
tion approximation algorithm offers a new approach for building
the QSAR and quantitative structure–property relationship (QSPR)
models. Replacing regression analysis with the GFA algorithm al-
lows the construction of models competitive with or superior to
those produced by standard techniques and makes available addi-
tional information not provided by other techniques. Unlike most
other analysis algorithms, GFA enables multiple models, where
the populations of the models are created by evolving random ini-
tial models using a genetic algorithm. GFA can build not only linear
models but also higher-order polynomials, splines, and other non-
linear functions (Discovery Studio. Accelrys Software Inc.) (Duch-
owicz, Vitale, Castro, Fernández, & Caballero, 2007).

2.8. Synthesis of a unique flavonoid, 40-fluoroflavone

All chemicals were commercially available and used without
purification except where otherwise stated. The 1H and 13C NMR
spectra were recorded on either a Bruker 300 or a Bruker
600 MHz instrument. The chemical shifts were reported in ppm
relative to the reference solvents: CDCl3, 1H (7.26), 13C (77.0);
DMSO-d6, 1H (2.49), 13C (39.7). The melting points were deter-
mined using an MP-2D apparatus and were not corrected. HRMS
was carried out on a model Finnigan MAT 95S.

1-(2-Hydroxy-4,6-dimethoxyphenyl)ethanone (3). Dimethyl sul-
phate (2.26 g, 23.8 mmol) was added to a solution of 2,4,6-trihy-
droxyacetophenone (2.0 g, 11.9 mmol) and K2CO3 (3.45 g,
25.0 mmol) in acetone (48 mL). The solution was stirred at ambient
temperate for 18 h. At the end of the reaction time, the solid was
removed by filtration. The resulting solution was concentrated
and partitioned between ethyl acetate and water. The organic layer
was dried (MgSO4), filtered, and concentrated. The solvent was re-
moved and used in the next step without further purification.

2-Acetyl-3,5-dimethoxyphenyl-4-fluorobenzoate (4). 1-Ethyl-3-
(3-dimethylaminopropyl)carbodiimide) (EDCI; 5.587 g, 29.14
mmol) and 4-dimethylaminopyridine (DMAP; 0.712 g, 5.83 mmol)
were added to a mixture of 3 and 4-fluorobenzoic acid (3.267 g,
23.32 mmol) in CH2Cl2 (130 mL) at 0 �C. The solution was gradually
warmed to ambient temperature and stirred for 30 h. The resulting
mixture was quenched with NaHCO3 (saturated) and extracted
with CH2Cl2. The organic layer was dried (MgSO4) and filtered.
Purification by flash column chromatography (230–400 mesh
SiO2, hex/EtOAc = 9/1) yielded a white solid. Yield: 86%.
Mp = 151.0–153.0 �C. 1H NMR (600 MHz, CDCl3): d 8.15 (dd,
J = 5.5 Hz, 1H), 8.14 (d, J = 5.5 Hz, 1H), 7.15 (t, J = 8.7 Hz, 2H), 6.41
(d, J = 2.3 Hz, 1H), 6.35 (d, J = 2.2 Hz, 1H), 3.86 (s, 3H), 3.82 (s,
3H), 2.47 (s, 3H). 13C NMR (150 MHz, CDCl3): d 199.1, 166.2 (C–F,
J = 253.5 Hz), 164.0, 162.3, 159.3, 149.8, 133.0, 132.9, 125.5,
117.1, 115.8, 115.7, 100.1, 96.7, 55.9, 55.6, 31.9. HRMS (ESI) calcu-
lated for C17H15FO5 ([M+H]+) 319. 0979. Found: 319.0982.

1-(4-Fluorophenyl)3-(2-hydroxy-4,6-dimethoxyphenyl)propane-
1,3-dione (5). Potassium hydroxide (0.844 g, 15.05 mmol) was
added to a solution of 4 (3.192 g, 10.03 mmol) in pyridine
(20 mL). The solution was heated at 50 �C for 2 h. The solution
was adjusted to pH 3 with 2 N HCl and extracted with ethyl ace-
tate. The organic layer was dried (MgSO4) and filtered. The mixture
was concentrated and used for the next step without purification.

2-(4-Fluorophenyl)-5,7-dimethoxy-4H-chromen-4-one (6). Con-
centrated sulphuric acid (0.25 mL) was added to a solution of 5
in glacial acetic acid (25 mL) and the mixture was refluxed for
1 h. Next, the mixture was diluted with cold water, extracted with
ethyl alcohol and washed with brine. The organic layer was dried
(MgSO4) and filtered. Purification by flash column chromatography
(230–400 mesh SiO2, hex/EtOAc = 3/1) yielded a red solid. Yield:
45%. Mp: 236.5–238.5 �C. 1H NMR (300 MHz, CDCl3): d 7.88–7.82
(m, 2H), 7.17 (t, J = 8.5 Hz, 2H), 6.60 (s, 1H), 6.54 (d, J = 2.3 Hz,
1H), 6.37 (d, J = 2.3 Hz, 1H), 3.95 (s, 3H), 3.90 (s, 3H). 13C NMR
(150 MHz, CDCl3): d 177.4, 164.5 (C–F, J = 250.1 Hz), 164.1, 159.7
(C–F, J = 21.0 Hz), 128.1, 128.0, 127.7, 116.2, 116.0, 109.2, 108.8,
96.2, 92.8, 56.4, 55.7. HRMS (ESI) calculated for C17H14FO4

([M+H]+) 301.0876. Found: 301.0867.
2-(4-Fluorophenyl)-5,7-dihydroxy-4-H-chromen-4-one (1). A

solution of 6 (0.759 g, 2.53 mmol) in 48% aqueous HBr (18 mL)
was heated under reflux for 12 h. The mixture was cooled to ambi-
ent temperate, diluted with NaHCO3 (saturated), and extracted
with ethyl acetate. The organic layer was dried (MgSO4) and fil-
tered. The solution was removed, and the residue was crystallised-
from a mixture of CH2Cl2:MeOH (3:2) as a yellow–green solid.
Yield: 37%. Mp: 289.0–291.0 �C. 1H NMR (600 MHz, d6-DMSO): d
12.79 (s, 1H), 8.14 (d, J = 9.0 Hz, 1H), 8.13 (d, J = 9.0 Hz, 1H) 7.40
(t, J = 9.0 Hz, 2H), 6.95 (s, 1H), 6.51 (d, J = 2.2 Hz, 1H), 6.20 (d,
J = 2.2 Hz, 1H). 13C NMR (150 MHz, d6-DMSO): d181.8, 164.5,
164.2 (C–F, J = 249.0 Hz), 162.2, 157.4, 129.2, 129.1, 127.3, 116.3,
116.2, 105.1, 103.8, 99.0, 94.1. HRMS (ESI) calcd for C15H10FO4

([M+H]+) 273.0563. Found: 273.0559.
3. Results and discussion

3.1. Toxicities and antioxidant activities of selected flavonoids

The goal of this study was to find novel flavonoids that had low-
er toxicities and higher antioxidant activities than flavone. First, we
treated zebrafish embryos with different concentrations of 15

http://www.hyper.com


720 Y.-H. Chen et al. / Food Chemistry 134 (2012) 717–724
different flavonoids (Fig. 1) to determine their LD50. Interestingly,
7-hydoxyflavone, 6-methoxyflavone, 7-methoxyflavone, 7-aminof-
lavone and kaempferolwere more toxic than flavone (3–27.86 ppm
vs. 35 ppm; Table 1). To examine the antioxidant activities of the
flavonoids used in this study, we measured their ‘ROS-scavenging
rates’ to determine whether they have the ability to reduce the
number of UVB-induced ROS in zebrafish. As shown in Fig. 2, the
ROS-scavenging rate of flavone is �68%, indicating that flavone
can remove around 68% of the UVB-induced ROS in zebrafish larvae
compared to the UVB-only group (without flavone treatment).
Most of the flavonoids tested in this study can reduce the amount
of UVB-induced ROS in zebrafish larvae (ROS-scavenging rates:
�15 to �101%). However, four flavonoids, 7-hydroxyflavone, 7-
methoxyflavone, kaempferol and rutin, have a positive ROS-scav-
enging rate (9–309%), indicating that they can amplify the number
of UVB-induced ROS (Fig. 2). Interestingly, chrysin and morin have
relatively higher antioxidant activities (ROS-scavenging rates;
�99% and �101%) and lower toxicities (LD50 > 100 ppm; Table 1)
than the rest of the flavonoids tested. Therefore, we decided to fur-
ther investigate whether chrysin and morin have chemoprotective
activities.
3.2. Chrysin and morin are efficient at protecting zebrafish fins from
UVB-induced damage

We previously showed that zebrafish fins are very sensitive to
UVB exposure (Liao & Chen, 2010; Wang et al., 2009). Therefore,
to test the chemoprotective properties of chrysin and morin, 10
or 20 ppm of either were added to zebrafish larvae. In addition,
each group received UVB treatment, and the fin malformation phe-
notypes were recorded. We applied the Kaplan–Meier method to
describe the time-to-return phenomena for each experimental
group. The malformation (or non-return) rate curve (Kaplan–Meier
estimate) for each group is presented in Fig. 3. The mean times of
‘return to normal’ and their corresponding standard errors are
listed in Table 2. The UVB + morin (20 ppm) experimental group
had the shortest average time (3.54 days) of ‘return to normal’,
with a standard error of 0.25 days (Table 2). In addition, the esti-
mated fin malformation rates at 5 days after exposure to UVB are
as follows: 85.45% for the UVB-only group, 18.52% for the
UVB + chrysin (10 ppm) group, 29.09% for the UVB + chrysin
(20 ppm) group, 32.14% for the UVB + morin (10 ppm) group, and
12.91% for the UVB + morin (20 ppm) group (Fig. 3). We used the
log-rank test to examine the heterogeneity of the malformation
rate curves across the groups. There was a significant difference
in time-to-return among these groups (p-value < 0.0001), suggest-
ing that the malformation rate curve for the UVB + morin (20 ppm)
Table 1
Toxicities of different flavonoids in this study.

Types of flavonoids Formula Substituent LD50(ppm)

Flavone C12H15O2 None 35.00
7-Hydoxyflavone C15H12O3 7-OH 3.00
7,8-Dihydroxyflavone C15H12O4 7,8-OH 62.35
30 ,40-Dihydroxyflavone C15H12O4 30 ,40-OH 48.33
30 ,40 ,5,7-Dihydroxyflavone C15H10O6 30 ,40 ,5,7-OH 50.00
6-Methoxyflavone C16H12O3 6-OCH3 13.08
7-Methoxyflavone C16H12O3 7-OCH3 15.79
6-Aminoflavone C15H11NO2 6-NH3 36.38
7-Aminoflavone C15H11NO2 7-NH3 22.70
Chrysin C15H12O4 5,7-OH >100
Kaempferol C15H10O6 3,5,7,40-OH 27.86
Morin C15H10O7 3,5,7,20 ,40-OH >100
Quercetin C15H10O7 3,5,7,30 ,40-OH 57.92
Myricetin C15H10O8 3,5,7,30 ,40 ,50-OH >100
Rutin C27H30O16 5,7,30 ,40-OH 3-rutinose >100
experimental group might be significantly different from the UVB-
only group.

The results of the Cox proportional hazards fit are shown in
Table 3. The relative probabilities of ‘return to normal fin’ (with
corresponding confidence limits) for the UVB + chrysin (10 and
20 ppm) and UVB + morin (10 and 20 ppm) groups compared to
the control (UVB-only) group are as follows: 7.93 (2.72–9.60),
6.30 (2.17–26.71), 5.47 (1.86–23.24) and 11.86 (4.09–50.14),
respectively. This indicates, for example, that a zebrafish in the
chrysin (10 ppm) group is 7.93 times more likely to achieve ‘return’
than one in the UVB-only group. As shown in Table 2, all relative
probabilities are statistically significant and morin (20 ppm) is
the most effective flavonoid for repairing damaged fins. On the ba-
sis of these observations, we propose that the UV-protective capac-
ities of flavonoids are highly associated with their antioxidant
abilities.

3.3. QSAR analysis

Since the 1980s, topological representation of a molecule (the
geometrical aspects of molecular structures) has been taken into
account when 3D QSAR show significance value on molecular
geometry. In this study, 14 flavonoids with definite ROS-scaveng-
ing values were derived from the 3D molecule spatial coordinates.
The semi-empirical AM1 calculation was performed for the confor-
mation search, and various physicochemical properties were ob-
tained from the QSAR protocol of DS2.1.

The chromone ring is almost planar, yet the interplanar angle
between the chromone and the 2-phenyl ring of parent flavonoid
is about 6�[v]; this dihedral angle might be affected by substitution
on the phenyl rings. In addition, the hydroxyl groups on the chro-
mone and 2-phenyl ring are other factors that we are interested in.
For this purpose, various physicochemical properties of the flavo-
noids were selected as descriptors used for QSAR construction.
These properties include 2D (AlogP, molecular_weight, number of
hydrogen acceptors, number of hydrogen donors, number of rotat-
able bonds, molecular surface area, topological descriptors such as
Wiener index, Zagreb index,. . . etc.) and 3D (dipole, shadow indi-
ces, molecular volume, molecular surface area,. . . etc.) parameters.

In order to develop significant QSAR equations, the statistical
methods applied were those of GFA and PLS techniques. GFA is de-
rived from the apocalypse of the life evolution and obeyed the con-
cept of evolution via natural selection. As a result, the derived
QSAR equations contain four major descriptors, including 2D
(numbers of hydrogen bond donors) and 3D descriptors (molecular
fractional polar surface area, area of the molecular shadow in the
YZ-plane, length of molecule in the Z-axis).

A reliable QSAR model should be validated with some statistical
indexes. In order to check the credibility of the models, several
parameters were used, such as squared correlation coefficient
(R2), adjusted squared correlation coefficient (Adj-R2), and F values.
Leave-one-out Cross-Validation R2 (Q2) was employed to validate
the generated QSAR equations. On the basis of our results of the
computational analysis (Table 4), Eq. (1) has the highest R2, Adj-
R2 and Q2 values. Thus we adopted this equation for the prediction
of the ROS-scavenging rates (%).The plot of the observed and pre-
dicted ROS-scavenging rates (%) is shown in Fig. 4:
N¼ 14; LOF¼ 0:36;R2 ¼ 0:82;Adj-R2 ¼ 0:78; Q 2 ¼ 0:63;F ¼24:60
3.4. Prediction of novel flavonoids with higher antioxidant activities

Among the four QSAR equations presented in Table 4, MFPSA
represents the molecular fractional polar surface area, which is



Fig. 2. UV-induced ROS levels are regulated by flavonoids. The ROS levels were measured using the oxidant-sensitive probe, H2DCFDA. The X- and Y-axes represent the
different flavonoids and ROS-scavenging rates, respectively. ROS-scavenging rates were calculated using the following equation: ROS-scavenging rates (%) = (FIflavonoids � FIUVB

only/FIUVB only) � 100%.

Fig. 3. Kaplan–Meier analysis to determine the number of days required for the
pelvic fin of the zebrafish embryos to return to normal following exposure to 10 or
20 ppm of morin or chrysin.

Table 2
Summarised results based on the Kaplan-Meier method for each experi-
mental group: control, morin (10 and 20 ppm), and chrysin (10 and
20 ppm).

Experiment
group

Mean time of ‘‘return to
normal’’ (day)

Standard error of
mean time

Control 4.90 0.08
Chrysin10 4.19 0.00
Chrysin20 4.37 0.10
Morin10 4.57 0.11
Morin20 3.54 0.25
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defined as the surface sum over all polar atoms. Molecular shadow
indices are a kind of topological descriptor, and the shadow indices
of projection represent good correlation between ROS values and
molecular structures. As seen in Table 5, the developed QSAR mod-
el also indicates that the ROS-scavenging rates can be intensified
by increasing MFPSA and shadow Z length and decreasing shadow
YZ values. Based on Eq. (1), there is no sufficient evidence to con-
nect intra-molecular hydrogen bond with ROS value, but the prop-
er positions of substituents may influence the value of Z-plane
shadow.

Following the indications of the QSAR equations listed in
Table 4, we speculated two compounds and computed their
putative antioxidant activities in Table 6.

3.5. Synthesis of a new flavone derivative and its antioxidant activity

Due to the results of the QSAR analysis, we decided to synthe-
sise compound P01 (Table 6). Compound P01 (Flavone 1) was first



Table 3
Cox proportional hazards regression for assessing the effects of treatments on time-to-return.

Experimental group L–R ChiSquare p-value Relative probability Lower CL Upper CL

Chrysin10 17.40 0.0000 7.93 2.72 33.65
Chrysin20 13.25 0.0003 6.30 2.17 26.71
Morin10 10.72 0.0011 5.47 1.86 23.24
Morin20 26.60 0.0000 11.86 4.09 50.14

Table 4
QSAR equations to predict the ROS of flavonoids.

No. QSAR equation R2 Adj-R2 Q2 F-value

1 Y = �16.02 + 0.66 � Shadow YZ � 2.57 �MFPSA � Shadow Z length 0.82 0.79 0.63 24.60
2 Y = �17.34 + 0.65 � Shadow YZ�0.18 � NumHBD � Shadow Z length 0.81 0.77 0.59 23.29
3 Y = �6.05 + 0.01 � Shadow YZ � Shadow YZ � 2.59 �MFPSA � Shadow Z length 0.81 0.77 0.57 22.88
4 Y = �7.65 + 0.01 � Shadow YZ � Shadow YZ 0.18 � 160.19 � NumHBD � Shadow Z length 0.80 0.76 0.56 22.58

Shadow YZ: Molecular shadow of YZ plane, MFPSA: molecular fractional polar surface area, shadow Z length: molecular shadow of Z-axis length, NumHBD: numbers of
hydrogen bond donor.

Fig. 4. Plot of observed vs. predicted ROS-scavenging rates (%) of 14 flavonoids.
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synthesised in a previous study by a recombinant E. coli system
(Katsuyama, Funa, Miyahisa, & Horinouchi, 2007). In this study,
we synthesized 1 in a straightforward manner, starting from the
commercially available material 2 (Fig. 5). Two hydroxyl groups
Table 5
Comparison of ROS-scavenging rates between experimental data and QSAR prediction.

Types of flavonoids ROS-scavenging rates (%) (experimental
data)

Predicted RO
(%)

Flavone �68 �34
7-Hydroxyflavone 84 16
7,8-Dihydroxyflavone �93 �50
30 ,40 ,5,7-

Tetrahydroxyflavone
�96 �105

6-Methoxyflavone �15 �33
7-Methoxyflavone 309 288
6-Aminoflavone �38 �106
7-Aminoflavone �81 6
Kaempferol 9 �51
Quercetin �78 �40
30 ,40-Dihydroxyflavone �90 �92
Chrysin �99 �46
Morin �101 �120
Myricetin �37 �28

a Number of hydrogen bond donor.
of compound 2 were methylated by dimethyl sulphate to give
compound 3, which was subsequently coupled with 4-fluoroben-
zoic acid to yield compound 4. Compound 4 underwent a Baker–
Venkataraman rearrangement to give compound 5. Without fur-
ther purification, compound 5 underwent cyclisation to provide
compound 6, which was demethylated by aqueous HBr under
refluxing conditions to afford the target molecule compound 1.
The overall yield was 15% in five steps from compound 2 (Fig. 5).

In a previous study, flavone 1(2-(4-fluorophenyl)-5,7-dihy-
droxy-4-H-chromen-4-one) (P01, Table 6), was synthesised in a
modified manner, and its ROS-scavenging ability was compared
to flavone (Katsuyama et al., 2007). As shown in Fig. 6, the ROS-
scavenging rate of molecule 1 is �54%, which corresponds well
with the predicted value (�48%) from the QSAR results.
3.6. The positions of hydroxyl and amino groups are associated with
the antioxidant activity of flavone

Previous study has been shown that the number of hydroxyl
groups and their positions on the A or C rings of flavones are re-
lated to their biological activities (Cushman, Nagarathnam, &
Geahlen, 1991). Additionally, they synthesised a group of flavones
with different hydroxyl group positions and evaluated their LD50

compared to that of protein-tyrosine kinases (PKTs). They con-
cluded that at least two hydroxyl groups were necessary to con-
tribute to biological potency. Moreover, they showed that
S-scavenging rates (Eq. (3)) MFPSA NumHBDa Shadow Z
length

Shadow
YZ

0.13 0 4.21 25.87
0.22 1 4.36 28.16
0.29 2 4.38 28.46
0.42 4 4.71 30.34

0.15 0 4.29 26.28
0.15 0 4.37 31.18
0.24 1 4.34 26.65
0.24 1 4.33 28.33
0.42 4 5.69 32.77
0.47 5 6.09 34.89
0.29 2 4.55 28.02
0.29 2 4.33 28.59
0.47 5 5.04 31.73
0.52 6 5.47 34.96



Table 6
Theoretical computation of two QSAR-predicted flavonoids.

Predicted
compound

MFPSA NumHBDa Shadow Z
length

Shadow
YZ

ROS Pred. eq. (1)
(%)

ROS Pred. eq. (2)
(%)

ROS Pred. eq. (3)
(%)

ROS Pred. eq (4)
(%)

ROS average
(%)

P01 0.28 2 4.37 28.38 �44 �55 �48 �60 �52
P02 0.31 2 4.42 29.11 �31 �9 �39 �16 �24

a Number of hydrogen bond donor.

Fig. 5. Synthesis of a new 40-fluoroflavone.

Fig. 6. Evaluation of the antioxidant activity of a new flavonoid. The ROS levels
were measured using the oxidant-sensitive probe, H2DCFDA.
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hydroxyl groups at the C3, C5, and C7 positions of flavones give
better results. On the other hand, amino groups that are considered
hydrogen donors and acceptors have a similar role to that of hydro-
xyl groups in flavones (Gao & Kawabata, 2005). Therefore, replace-
ment of hydroxyl groups with amino groups may provide
alternative choices for the synthesis of novel amino flavones. How-
ever, aminoflavones have been rarely studied or synthesiseduntil
recently (Cushman, Zhu, Geahlen, & Kraker, 1994; Dauzonne,
Folléas, Martines, & Chabot, 1997; Deng, Lepoivre, & Lemière,
1999; Gao & Kawabata, 2005; Göker et al., 1995; Takechi,
Tokikawa, Miyake, & Sasaki, 2006). Lastly, amino groups located
at C5 and C4 are better at inhibiting breast cancers (Akama et al.,
1996).

4. Conclusion

In this study, we used zebrafish larvae as a model organism to
test the antioxidant ability of flavonoids. After comparing the
structureactivity relationship of flavonoids and their antioxidant
activities by theoretical prediction and experimental methods,
several novel compounds were predicted and are ready to be
synthesised. This approach is efficient and should be used as a tool
for the first round of drug screening.
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